Protein expression (biotechnology)

Protein expression is a subcomponent of gene expression. It consists of the stages after DNA has been translated into polypeptide chains, which are ultimately folded into proteins. Protein expression is commonly used by proteomics researchers to denote the measurement of the presence and abundance of one or more proteins in a particular cell or tissue.

Protein expression systems are very widely used in the life sciences, biotechnology and medicine. Molecular biology research uses an enormous number of proteins and enzymes many of which are from expression systems; particularly DNA polymerase for PCR, reverse transcriptase for RNA analysis and restriction endonucleases for cloning. There are also significant medical applications for expression systems, notably the production of human insulin to treat diabetes.

Contents

Expression systems

Commonly used protein expression systems include those derived from bacteria,[1] yeast,[2] baculovirus/insect,[3] and mammalian cells.[4][5]

Cell-based systems

The oldest and most widely used expression systems are cell-based and may be defined as the "combination of an expression vector, its cloned DNA, and the host for the vector that provide a context to allow foreign gene function in a host cell, that is, produce proteins at a high level".[6][7] Expression is often done to a very high level and therefore referred to as overexpression.

There are many ways to introduce foreign DNA to a cell for expression, and there are many different host cells which may be used for expression - each expression system has distinct advantages and liabilities. Expression systems are normally referred to by the host and the DNA source or the delivery mechanism for the genetic material. For example, common hosts are bacteria (such as E.coli, B. subtilis), yeast (such as S.cerevisiae) or eukaryotic cell lines. Common DNA sources and delivery mechanisms are viruses (such as baculovirus, retrovirus, adenovirus), plasmids, artificial chromosomes and bacteriophage (such as lambda). The best expression system of choice depends on the gene involved, for example the Saccharomyces cerevisiae is often preferred for proteins that require significant posttranslational modification and Insect or mammal cell lines are used when human-like splicing of the mRNA is required. Nonetheless, bacterial expression has the advantage of easily producing large amounts of protein, which is required for X-ray crystallography or nuclear magnetic resonance experiments for structure determination.

Escherichia coli

E. coli is one of the most widely used expression hosts, and DNA is normally introduced in a plasmid expression vector. The techniques for overexpression in E. coli are well developed and work by increasing the number of copies of the gene or increasing the binding strength of the promoter region so assisting trancription.

For example a DNA sequence for a protein of interest could be cloned or subcloned into a high copy-number plasmid containing the lac promoter, which is then transformed into the bacterium Escherichia coli. Addition of IPTG (a lactose analog) activates the lac promoter and causes the bacteria to express the protein of interest.

Corynebacterium

Non-pathogenic species of the gram-positive Corynebacterium are used for the commercial production of various amino acids. The C. glutamicum species is widely used for producing glutamate and lysine,[8] components of human food, animal feed, and pharmaceutical products.

Expression of functionally active human epidermal growth factor has been done in C. glutamicum,[9] thus demonstrating a potential for industrial-scale production of human proteins. Expressed proteins can be targeted for secretion through either the general secretory pathway (Sec) or the twin-arginine translocation pathway (Tat).[10]

Unlike gram-negative bacteria, the gram-positive Corynebacterium lack lipopolysaccharides that function as antigenic endotoxins in humans.

Cell-free systems

Cell-free expression of proteins is possible using purified RNA polymerase, ribosomes, tRNA and ribonucleotides. These reagents may be produced by extraction from cells or from a cell-based expression system. Due to the low expression levels and high cost of cell-free systems cell-based systems are more widely used.

See also

References

  1. ^ Baneyx F (October 1999). "Recombinant protein expression in Escherichia coli". Curr. Opin. Biotechnol. 10 (5): 411–21. PMID 10508629. 
  2. ^ Cregg JM, Cereghino JL, Shi J, Higgins DR (September 2000). "Recombinant protein expression in Pichia pastoris". Mol. Biotechnol. 16 (1): 23–52. doi:10.1385/MB:16:1:23. PMID 11098467. 
  3. ^ Kost TA, Condreay JP, Jarvis DL (May 2005). "Baculovirus as versatile vectors for protein expression in insect and mammalian cells". Nat. Biotechnol. 23 (5): 567–75. doi:10.1038/nbt1095. PMID 15877075. 
  4. ^ Rosser MP, Xia W, Hartsell S, McCaman M, Zhu Y, Wang S, Harvey S, Bringmann P, Cobb RR (April 2005). "Transient transfection of CHO-K1-S using serum-free medium in suspension: a rapid mammalian protein expression system". Protein Expr. Purif. 40 (2): 237–43. doi:10.1016/j.pep.2004.07.015. PMID 15766864. 
  5. ^ Lackner A, Genta K, Koppensteiner H, Herbacek I, Holzmann K, Spiegl-Kreinecker S, Berger W, Grusch M (September 2008). "A bicistronic baculovirus vector for transient and stable protein expression in mammalian cells". Anal. Biochem. 380 (1): 146–8. doi:10.1016/j.ab.2008.05.020. PMID 18541133. 
  6. ^ "Definition: expression system". Online Medical Dictionary. Centre for Cancer Education, University of Newcastle upon Tyne: Cancerweb. 1997-11-13. http://cancerweb.ncl.ac.uk/cgi-bin/omd?expression+system. Retrieved 2008-06-10. 
  7. ^ "Expression system - definition". Biology Online. Biology-Online.org. 2005-10-03. http://www.biology-online.org/dictionary/Expression_system. Retrieved 2008-06-10. 
  8. ^ Brinkrolf K, Schröder J, Pühler A, Tauch A (September 2010). “The transcriptional regulatory repertoire of Corynebacterium glutamicum: reconstruction of the network controlling pathways involved in lysine and glutamate production.” J Biotechnol. 149 (3): 173-82.
  9. ^ Date M, Yokoyama K, Umezawa Y, Matsui H, Kikuchi Y (January 2006). “Secretion of human epidermal growth factor by Corynebacterium glutamicum.” Lett Appl Microbiol. 42 (1): 66-70.
  10. ^ Meissner D, Vollstedt A, van Dijl JM, Freudl R (September 2007). “Comparative analysis of twin-arginine (Tat)-dependent protein secretion of a heterologous model protein (GFP) in three different Gram-positive bacteria.” Appl Microbiol Biotechnol. 76 (3): 633-42.

Further reading